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Abstract. The problem of determining a maximum matching or whether there exists a perfect
matching, is very common in a large variety of applications and as been extensively studied in graph
theory. In this paper we start to introduce a characterisation of a family of graphs for which its
stability number is determined by convex quadratic programming. The main results connected with
the recognition of this family of graphs are also introduced. It follows a necessary and sufficient
condition which characterise a graph with a perfect matching and an algorithmic strategy, based on
the determination of the stability number of line graphs, by convex quadratic programming, applied
to the determination of a perfect matching. A numerical example for the recognition of graphs with a
perfect matching is described. Finally, the above algorithmic strategy is extended to the determination
of a maximum matching of an arbitrary graph and some related results are presented.
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1. Introduction

In this paper we deal with undirected simple graphs (that is, graphs where there is
nor loops neither multiple edges),G, for whichV (G) denotes the set of nodes and
E(G) the set of edges. An element ofE(G), whose ends are the nodesi andj , is
denoted by{i, j}. It is also assumed thatG is of ordern > 1 and sizem > 0 (i.e.,
|V (G)| = n > 1 and|E(G)| = m > 0). The matrixAG denotes the adjacency
matrix of the graphG, that is,AG = (aij )n×n is such that

aij =
{

1 if {i, j} ∈ E(G)
0 otherwise.

GivenU ⊂ V (G), we denote byG − U the subgraph induced by the set of nodes
V (G)\U and byAG−U its adjacency matrix. Given a nodei ∈ V (G),NG(i) is the
neighbourhood of the nodei, that is,NG(i) = {j ∈ V (G) : {i, j} ∈ E(G)}.

A subset of nodesS ⊆ V (G) is stableif no two nodes inS are linked by an
edge. A stable setS is called amaximum stable setif there is no other stable set
with greater number of nodes. The number of nodes in a maximum stable set of
a graphG is called thestability number(or independence number) of G and it is
denoted (as usually)α(G).

Given a subset of nodes of a graphG, S ⊆ V (G), the vectorx ∈ RV with
xv = 1 if v ∈ S andxv = 0 if v /∈ S is called the characteristic vector ofS.
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Denoting byλmin(AG) the minimum eigenvalue of the adjacency matrix of a
graphG, AG, as it is well known, see (Cvetkovich, Doob and Sachs, 1979), if
G has at least one edge, thenλmin(AG) 6 −1 and,λmin(AG) = −1 if and only
if every connected component ofG is a complete subgraph. IfE(G) = ∅ then
λmin(AG) = 0.

As it is proved in Luz and Cardoso (1998), assuming thatG has at least one
edge,φ∗2,1(G) is the best upper bound forα(G), among the optimal values of the
family of convex quadratic programming problems

φ∗a,b(G) = max{aêT x − bxT ( 1

−λmin(AG)AG + In)x : x > 0},

whereê is the all-ones vector ofRn, In is the identity matrix of ordern, anda and
b are real numbers such thatb > 0 anda − b > 1. On the other hand, with the
same assumption, according to Luz (1995 ),α(G) = φ∗2,1(G) if and only if for a
maximum stable setS of G (and then for all),

−λmin(AG) 6 min{|NG(i) ∩ S| : i 6∈ S}. (1.1)

Now, defining

(P
φ∗
G ) φ

∗(G) =
{

φ∗2,1(G) if E(G) 6= ∅
max{2êT x− ‖ x ‖2, x > 0} = n otherwise,

as a direct consequence of the above results, we can conclude that for any graph,G,

α(G) 6 φ∗(G) andα(G) = φ∗(G) if and only if the inequality (1.1) is fulfilled.
Such upper bound, forα(G), also can be obtained from Motzkin–Straus result
(Motzkin and Straus, 1965), which may be looked up in Gibbons et al (1997), from
which we get

(min{xT (AG + In)x : x > 0, êT x = 1})−1 = α(G). (1.2)

In fact, assumingE(G) 6= ∅ and thenλmin(AG) 6 −1, it follows that

xT (
1

−λmin(AG)
AG + In)x 6 xT (AG + In)x ∀x > 0 (1.3)

and hence, since by theorem 5 of Bomze (1998)

φ∗(G) = max{2êT x − xT ( 1

−λmin(AG)
AG + In)x : x > 0}

= (min{xT ( 1

−λmin(AG)AG + In)x : x > 0, êT x = 1})−1,

applying (1.2) and (1.3) we obtain

α(G) 6 φ∗(G), (1.4)
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with equality if and only ifλmin(AG) = −1 or there is an optimal solution,x∗, for
(P

φ∗
G ), such thatx∗T AGx∗ = 0. It must be noted that ifx∗ is an optimal solution

for (P φ
∗

G ) thenêT x∗
φ∗(G) = 1 and according to (1.2) and (1.4)

φ∗(G)2

x∗T (AG + I )x∗ 6 α(G) 6 φ
∗(G). (1.5)

The plan of the paper is as follows. In Section 2 a complete characterisation of
the family of graphs with convex-QP stability number (where QP means quadratic
programming) is provided as well the main results connected with its recognition.
In Section 3 a necessary and sufficient condition that characterises graphs with a
perfect matching is introduced as well an algorithmic strategy for the recognition
of such graphs. In Section 4 a numerical example for the determination of a perfect
matching of a graph,G, based on the determination of a maximum stable set of
its line graphL(G), by a convex quadratic programming approach is described.
Finally, in Section 5, the recognition of a graph with a perfect matching is extended
to the determination of a maximum matching of an arbitrary graph and some related
results are presented.

2. Graphs with Convex-QP Stability Number

In Luz and Cardoso (1998), assuming thatG − {v} has at least one edge, it is
proved that ifφ∗2,1(G−{v}) = φ∗2,1(G) andλmin(AG−{v}) 6= λmin(AG) thenα(G) =
φ∗2,1(G) and, furthermore, if̄x∗ ∈ Rn−1 is an optimal solution for(P φ

∗
G−{v}), thenx∗

such that

x∗i =
{
x̄i if i 6= v
0 otherwise,

is the characteristic vector of a maximum stable set ofG. Now we introduce the
following generalisation.

THEOREM 1. If U ⊆ V (G) is such thatφ∗(G−U) = φ∗(G) andλmin(AG−U ) 6=
λmin(AG) thenφ∗(G) = α(G) and, furthermore, any optimal solution of(P φ

∗
G−U )

define a characteristic vector of a maximum stable set ofG.
Proof. If G− U has no edges thenφ∗(G− U) = α(G− U) and, according to

the hypothesis,

φ∗(G− U) = α(G− U) 6 α(G) 6 φ∗(G)⇒ α(G) = φ∗(G).
Furthermoreα(G−U) = α(G) = φ∗(G−U) implies that the optimal solution of
(P

φ∗
G−U) is the characteristic vector of the maximum stable setV (G) \ U .

Let us suppose thatE(G − U) 6= ∅, x̄∗ is an optimal solution for(P φ
∗

G−U) and
x∗, is such that

x∗j =
{
x̄∗j , if j ∈ V (G) \ U
0, if j ∈ U.
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Let ē be a all ones vector withp = n− |U | components. Then

φ∗(G− U) = 2ēT x̄∗ − x̄∗T ( 1

−λmin(AG−U )
AG−U + Ip)x̄∗

= 2eT x∗ − x∗T ( 1

−λmin(AG−U )
AG + In)x∗

6 2eT x∗ − x∗T ( 1

−λmin(AG)AG + In)x
∗ (2.6)

6 φ∗(G).

Sinceφ∗(G− U) = φ∗(G), thenx∗ is an optimal solution for(P φ
∗

G ) and

x∗T (
1

−λmin(AG−U)AG + In)x
∗ = x∗T ( 1

−λmin(AG)AG + In)x
∗.

Thusλmin(AG) < λmin(AG−U) impliesx∗T AGx∗ = 0, that is,x∗ is the character-
istic vector of a maximum stable set ofG, and thenα(G) = φ∗(G). 2

Throughout this paperυ(G) stands for the optimal value of the convex quadratic
programming problem

(PG) υ(G) = max{2êT x − xT (HG + In)x : x > 0},
where

HG =
{ 1
d−λmin(AG)eAG if λmin(AG) 6= 0

0 otherwise,

with d−λmin(AG)e denoting the least integer not less than the symmetric value of
the minimum eigenvalue ofAG.

It must be noted thatυ(G) remains an upper bound forα(G), which it is not
less thanφ∗(G), that is,

α(G) 6 φ∗(G) 6 υ(G).

On the other hand, since the right hand side of the inequality (1.1) is always an
integer, the lower bound of the necessary and sufficient condition forα(G) =
φ∗(G) and then forα(G) = υ(G)? can be improved. So we can say thatα(G) =
φ∗(G) = υ(G) if and only if for a maximum stable set,S, ofG (and then for all),

d−λmin(AG)e 6 min{|NG(i) ∩ S| : i 6∈ S}. (2.7)

? Note that ifα(G) = φ∗(G) then(Pφ
∗

G
) has an integer 0−1 optimal solution which, according to

the Karush–Kuhn–Tucker optimality conditions, is also optimal for(PG) and thenφ∗(G) = υ(G).
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The main advantage of the use ofυ(G) instead ofφ∗(G) is that if λmin(AG) is
not integer then the optimal solution of(PG) is unique?? and then is very easy to
conclude if the equalitiesα(G) = φ∗(G) = υ(G) hold or not.

A graphG such thatα(G) = υ(G) is here in called a graph withconvex-QP
stability numberand throughout this paper this class of graphs will be denoted by
Q.

According to the Karush–Kuhn–Tucker optimality conditions,x∗ > 0 is an
optimal solution for the convex quadratic programming problem(PG) if and only
if it is a solution of the linear complementarity problem

AGx = d−λmin(AG)e(ê − x)+ y∗,
with y∗ > 0 andx∗T y∗ = 0.

As an immediate consequence, ifx∗ is an optimal solution for(PG) thenx∗T AGx∗
= d−λmin(AG)ex∗T (ê − x∗) and thus ifE(G) 6= ∅ then

υ(G) = 2êT x∗ − x∗T ( 1

d−λmin(AG)eAG + In)x
∗ = êT x∗ > 1.

Therefore, since any subset of nodes with characteristic vectorx is a stable set iff
xT AGx = 0, we conclude thatα(G) = υ(G) if and only if there is an optimal
solution for (PG), x∗, such thatx∗ ∈ {0,1}n. The same conclusion may be
obtained adapting the inequalities (1.5), assuming thatx∗ is an optimal solution
for (PG) and replacingφ∗(G) by υ(G). As a direct consequence of the next the-
orem, it is also easy to conclude that ifx∗ is an optimal solution for(PG) then
∀i ∈ V (G) 06 x∗i 6 1.

THEOREM 2. Let aiG be thei-th row of the matrixAG. Then the n-tuple of real
numbersx∗ is an optimal solution for(PG) if and only if ∀i ∈ V (G) x∗i =
max{0,1− r∗i }, wherer∗i = aiGx

∗
d−λmin(AG)e .

Proof.Let x∗ be an optimal solution for(PG), and letē, x̄∗ andx̄ the subvectors
of ê, x∗ andx, respectively, without thei-th component. Let

fG−{i}(x̄) = 2ēT x̄ − x̄T ( 1

d−λmin(AG)eAG−{i} + In−1)x̄.

First, it must be observed that

υ(G) = max{fG−{i}(x̄)+ 2xi − x2
i − 2xi

aiGx

d−λmin(AG)e : x̄, xi > 0}
= fG−{i}(x̄∗)+ 2x∗i − x∗2i − 2x∗i r

∗
i

= fG−{i}(x̄∗)+ ψ(x∗i )
= fG−{i}(x̄∗)+max{ψ(xi) : xi > 0},

?? It must be noted that if−λmin(AG)<d−λmin(AG)e then the objective function of(PG) is
strictly convex.
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whereψ(xi) = 2xi − x2
i − 2xir∗i .

Since d
dxi
ψ(xi) = 2(1− r∗i ) − 2xi and d2

dx2
i

ψ(xi) = −2, we can conclude that

ψ(xi) is a strictly concave function which attains its maximum on a critical point,
i.e., on the solution of equation

d

dxi
ψ(xi) = 0⇔ xi = 1− r∗i .

Therefore, sinceψ(x∗i ) = max{ψ(xi) : xi > 0}, we have

x∗i = max{0,1− r∗i }.
Conversely, let us suppose that there is ann-tuple of real numbers,x∗, such that
∀i ∈ V (G) x∗i = max{0,1− r∗i }.

Thus∀i ∈ V (G) x∗i = 1− r∗i + yi , with

yi =
{ −(1− r∗i ) if (1− r∗i ) < 0

0 otherwise,

and thenyi > 0. So∀i ∈ V (G)
r∗i = 1− x∗i + yi ⇔ aiGx

∗ = d−λmin(AG)e(1− x∗i + yi).
Therefore, settingy∗i = d−λmin(AG)eyi ∀i ∈ V (G), we get the system of equa-
tions

aiGx
∗ = d−λmin(AG)e(1− x∗i )+ y∗i , i ∈ V (G)

AGx
∗ = d−λmin(AG)e(ê − x∗)+ y∗,

which is equivalent to the Karush–Kuhn–Tucker optimality conditions (sincex∗T y∗
= 0). 2

It is an obvious conclusion that if a graph,G, has no edges then, the optimal
solution of (PG) is the characteristic vector of the maximum stable set induced by
V (G), and thusα(G) = υ(G) = |V (G)|.

The class of graphs with convex-QP stability number is not hereditary (Lozin
and Cardoso, 1999). Though, according to the next theorem, this class of graphs is
closed under deletion ofα–reducible sets of nodes (defining anα–reducible set of
nodes as being a subsetU ⊂ V (G) such thatα(G) = α(G− U)).

Before to proceed it must be noted that, by interlacing properties, ifU ⊆ V (G)
thenλmin(AG) 6 λmin(AG−U ) and therefore, by (2.6),

υ(G− U) 6 υ(G). (2.8)

THEOREM 3. If G ∈ Q andU ⊆ V (G) is such thatα(G) = α(G − U) then
G− U ∈ Q.
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Proof.SinceU is such thatα(G) = α(G− U) therefore, from the inequalities

α(G− U) 6 υ(G− U) 6 υ(G),
we can conclude thatα(G) = υ(G) impliesα(G− U) = υ(G− U). 2

As a consequence of the above theorem, ifG ∈ Q then there is a setU ⊆ V (G)
such that|U | = |V (G)| − υ(G) and∀T ⊆ U, G − T ∈ Q. Note that ifS is a
maximum stable set ofG then

∀T ⊆ V (G) \ S, α(G) = α(G− T ) 6 υ(G− T ) 6 υ(G),
and thereforeα(G) = υ(G)⇒ α(G− T ) = υ(G− T ) = υ(G).

The following results provide an algorithmic strategy for the recognition of
graphs with quadratic stability number.

THEOREM 4. If there existsv ∈ V (G) such that

υ(G) 6= max{υ(G− {v}), υ(G−NG(v))}
thenG /∈ Q.

Proof. Since by (2.8)υ(G) > υ(G − U) ∀U ⊆ V (G), the hypothesis of
theorem implies thatυ(G) > max{υ(G− {v}), υ(G−NG(v))}.

Let S be a maximum stable set ofG. If v /∈ S then

α(G) = α(G− {v}) 6 υ(G− {v}) < υ(G).
If v ∈ S thenα(G) = α(G−NG(v)) 6 υ(G−NG(v)) < υ(G). 2

As immediate consequence of the above theorem, ifG ∈ Q then

∀v ∈ V (G), υ(G) = max{υ(G− {v}), υ(G−NG(v))}.
THEOREM 5. Consider thatυ(G) = max{υ(G− {v}), υ(G−NG(v))} and that
υ(G− {v}) 6= υ(G−NG(v)).
1. If υ(G) = υ(G− {v}) thenG ∈ Q⇔ G− {v} ∈ Q.
2. If υ(G) = υ(G−NG(v)) thenG ∈ Q⇔ G−NG(v) ∈ Q.

Proof.
1. Let us suppose thatG ∈ Q. Sinceα(G) = υ(G) > υ(G − NG(v)) > α(G−
NG(v)), we can conclude thatα(G) > α(G−NG(v)). Thus, ifS is a maximum
stable set forG, thenNG(v) ∩ S 6= ∅ and thereforev /∈ S. So

α(G− {v}) = α(G) = υ(G) = υ(G− {v})⇒ G− {v} ∈ Q.

Conversely, supposing thatG− {v} ∈ Q, according to the inequalities

α(G− {v}) 6 α(G) 6 υ(G) = υ(G− {v}),
we can conclude thatα(G) = υ(G).
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2. Let us suppose thatG ∈ Q. Then, according to the hypothesis,

α(G) = υ(G) > υ(G− {v}) > α(G− {v}),
and thenα(G − {v}) < α(G). Therefore, ifS is a maximum stable set then
v ∈ S, NG(v) ∩ S = ∅ andα(G−NG(v)) = α(G).
Thusα(G) = α(G − NG(v)) 6 υ(G − NG(v)) 6 υ(G) and the assumption
thatG ∈ Q impliesα(G−NG(v)) = υ(G−NG(v)).
Conversely, supposingG−NG(v) ∈ Q, according to the hypothesis we know
thatα(G−NG(v)) 6 α(G) 6 υ(G) = υ(G−NG(v)) and thenα(G) = υ(G).2

None of the theorems 4 and 5 can be applied when all of the following equalities
hold

∀v ∈ V (G) υ(G) = υ(G− {v}) = υ(G−NG(v)).
However the next theorem provides a branching strategy for such graphs (or sub-
graphs).

THEOREM 6. If there existsv ∈ V (G) such thatυ(G) = υ(G − {v}) = υ(G −
NG(v)) then

G ∈ Q if and only if

 G−NG(v) ∈ Q
or

G− {v} ∈ Q
Proof.Let us suppose thatG ∈ Q andS is a maximum stable set ofG. If v ∈ S

thenα(G) = α(G − NG(v)) 6 υ(G − NG(v)) = υ(G) ⇒ α(G − NG(v)) =
υ(G − NG(v)). If v /∈ S thenα(G) = α(G − {v}) 6 υ(G − {v}) = υ(G) ⇒
α(G− {v}) = υ(G− {v}).

Conversely let us suppose thatG − U ∈ Q, with U = {v} or U = NG(v).
Then, sinceα(G − U) 6 α(G) 6 υ(G) = υ(G − U), we can conclude that
α(G) = υ(G). 2

There are a large variety of graphs with convex-QP stability number. For in-
stance, as will be proved in Section 5, ifG is a connected graph with an even
number of edges, thenL(L(G)) ∈ Q, whereL(G) denotes the line graph ofG.

The line graphof a graphG it is constructed by taking the edges ofG as nodes
of L(G), and joining two nodes inL(G) whenever the corresponding edges inG
have a common node.

3. Characterisation of Graphs with a Perfect Matching

Given the graphG, a matchingin G is a subset of edges,M ⊆ E(G), no two of
which have a common node. A matching with maximum cardinality is designated
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maximum matching. On the other hand if for each nodev ∈ V (G) there is one edge
of the matchingM incident withv, thenM is called aperfect matching.

The problem of determining a maximum matching or whether there exists a
perfect matching is very common in a large variety of applications and as been
extensively studied in graph theory. There are several very readable texts about
matching theory, among which we can refer, for instance, the classical monograph
of Lovász and Plummer (Lovász and Plummer, 1986) or the survey of Pulleyblank
(Pulleyblank, 1995). The determination of a maximum stable set of a line graph
L(G) is equivalent to the determination of a maximum matching ofG. There-
fore, sinceα(L(G)) 6 υ(L(G)), the optimal solution of(PL(G)) is an upper
bound on the number of elements of a maximum matching ofG. Based on the
Edmonds perfect matching algorithm, introduced in his landmark paper (Edmonds,
1965), polynomial-time algorithms have been developed for the determination of a
maximum matching of a graphG.

A basic property of line graphs is that they are claw-free (that is, they are
graphs which contains no induced subgraph isomorph toK1,3). In Minty (1980)
and Sbihi (1980) polynomial-time algorithms for the determination of maximum
stable sets of claw-free graphs were introduced. However, none of them utilize a
convex quadratic programming approach.

Let us denote byBG = (bve)n×m (wheren = |V (G)| andm = |E(G)|) the
node edge incident matrix of a graphG, that is, such that

bve =
{

1 if the nodev is incident with the edgee
0 otherwise.

ThenBTGBG = AL(G) + 2Im is a positive semidefinite matrix and

∀u ∈ Rm \ {0}, uT BTGBGu = uTAL(G)u+ 2||u||2 > 0⇒ uT AL(G)u

||u||2 > −2.

So, the minimum eigenvalue ofAL(G) is not less than−2 and if the Kernel ofBG,
Ker(BG) = {u ∈ Rn : BGu = 0}, is nontrivial andu ∈ Ker(BG) \ {0}, then
AL(G)u = BTGBGu − 2u = −2u. As a consequence,−2 is an eigenvalue ofAL(G)
and thenλmin(AL(G)) = −2.

For a connected graph,G, λmin(AL(G)) = −2 if and only if G has an even
cycle or two odd cycles (Doob, 1973). On the other hand, given a connected graph
G with n nodes andm edges, such thatλmin(AL(G)) = −2, then the multiplicity of
this eigenvalue ism− n+ 1 if G is bipartite, andm− n otherwise (Doob, 1973).

Now, before to introduce the main result of this section, let us remind that a
graph has a perfect matching if and only if each of its components has a per-
fect matching. Hence, in order to get a characterisation of graphs with perfect
matchings it suffices to consider the case thatG is connected.

THEOREM 7. A connected graphG of order n > 1, such thatL(G) is not
complete, has a perfect matching if and only ifL(G) ∈ Q.
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Proof. SinceL(G) is a line graph which is connected (sinceG is connected)
and not complete, then

−26 λmin(AL(G)) < −1⇔ 1< −λmin(AL(G)) 6 2.

Let us suppose thatS(G) is a perfect matching ofG for which S(L(G)) is the
corresponding independent set of nodes ofL(G). Let e ∈ E(G)\S(G) be the edge
which corresponds inL(G) to the nodeve. SinceS(G) is a perfect matching ofG,
if e = {i, j} then there are two edgesei, ej ∈ S(G) such that the nodei is incident
with the edgeei and the nodej is incident with the edgeej . Thus, by construction,
the nodeve is adjacent to the nodesvei , vej ∈ S(L(G)) and we can conclude that

∀ve /∈ S(L(G)) |NL(G)(ve) ∩ S(L(G))| > 2.

Furthermore, sinceL(G) is a claw-free graph we can conclude that|NL(G)(ve) ∩
S(L(G))| = 2. Therefore

d−λmin(AL(G))e = 26 min{|NL(G)(ve) ∩ S(L(G))| : ve /∈ S(L(G))}
and, according to (2.7),α(L(G)) = υ(L(G)).

Conversely let us suppose that there is no perfect matching forG and thatS(G)
is a maximum matching. Then there is a nodek ∈ V (G) such thatk is not incident
with any edge ofS(G). On the other hand, sinceG has no isolated nodes, the
nodek is incident with an edgẽe = {k, j} ∈ E(G), and there is an edgëe ∈
S(G), such thatj is incident withë (otherwiseS(G) would be not a maximum
matching). Thus, the node ofL(G) which corresponds tõe, vẽ, does not belong
to the maximum stable setS(L(G)), and, by construction ofL(G), vë is the only
node ofS(L(G)) adjacent tovẽ. Therefore,

min{|NL(G)(ve) ∩ S(L(G))| : ve /∈ S(L(G))} = 1< 2= d−λmin(L(G))e
and, once again, by (2.7),α(L(G)) 6= υ(L(G)). 2

It must be noted that if|E(G)| > 1 then only the triangles and the stars are
graphsG for whichL(G) is a complete graph. For these graphs, however, it is very
easy to find a maximum matching.

The next theorem provides an easy way to find optimal solutions for(PL(G)),
whenG has a perfect matching.

THEOREM 8. If G is connected andL(G) ∈ Q then the optimal solutions of
(PL(G)) are critical points for its objective function,

fL(G)(x) = 2êT x − xT (HL(G) + Im)x.
Proof. If |E(G)| = 1 the proof is trivial. Let us suppose that|E(G)| > 1 and

let S be a maximum stable set forL(G). SinceL(G) ∈ Q, then by (2.7)∀v /∈
S |NL(G)(v)∩ S| = 2 and, the characteristic vector ofS, x∗, is an optimal solution
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for (PL(G)). Therefore, by the Karush–Kuhn–Tucker optimality conditions,∃y∗ >
0 such that

AL(G)x
∗ = 2(ê − x∗)+ y∗ ∧ x∗T y∗ = 0,

whereê denotes a all ones vector ofRm,withm = |E(G)| = |V (L(G))|. Denoting
by aiL(G) thei-th row ofAL(G), we have the following equalities:

∀i ∈ S aiL(G)x∗ =
∑

j∈NL(G)(i)
x∗j = 0= 2(1− x∗i )+ y∗i ⇒ y∗i = 0,

∀i /∈ S aiL(G)x∗ =
∑

j∈NL(G)(i)
x∗j = 2= 2(1− x∗i )+ y∗i ⇒ y∗i = 0.

Theny∗ = 0 and

AL(G)x
∗ = d−λmin(AL(G))e(ê − x∗)⇔ ∇fL(G)(x∗) = 0,

where∇fL(G)(x) denotes the gradient of the objective function of(PL(G)). 2
If for a connected graphG of ordern > 1, such thatL(G) is not complete, there

is a critical point,x∗ ∈ {0,1}n, of the objective function of (PL(G)), fL(G)(x) =
2êT x−xT (HL(G)+Im)x, then it is obvious thatL(G) ∈ Q. Therefore, to recognise
if L(G) ∈ Q is equivalent to recognise if the systemAL(G)x = d−λmin(AL(G))e(ê−
x) has a 0− 1 solution. However, as it is well known, in general, the problem o
finding a 0− 1 solution among the ones of a system of linear equations is an hard
problem.

Since, if a connected graph,G, has a perfect matching thenυ(L(G)) = |V (G)|2 ∈
ZZ, whereZZ is the set of integers, letG be the set of connected graphsG of order
n > 1, such thatυ(L(G)) = n

2 ∈ ZZ (and then they are neither triangles,K3, nor
stars,K1,p, with whichυ(L(K3)) = υ(L(K1,p)) = 1). Thus we have the following
algorithmic strategy for the recognition of graphsG ∈ G such thatL(G) ∈ Q.

0. Algorithm(to recognise graphsG ∈ G such thatL(G) ∈ Q)

1. SetW = V (L(G));
2. Let x∗L(G) be an optimal solution for (PL(G)).

2.1 If x∗ ∈ {0,1}|V (L(G))| then STOP (L(G) ∈ Q);

3. If λmin(AL(G)) /∈ ZZ then STOP (L(G) /∈ Q);

4. Choosew ∈ W and setW = W \ {w};
5. If υ(L(G)) /∈ {υ(L(G)− {w}), υ(L(G)−NL(G)(w))}

5.1 then STOP (L(G) /∈ Q);

6. If υ(L(G)) = υ(L(G)− {w}) > υ(L(G)− NL(G)(w))
6.1 then setL(G) = L(G)− {w} and goto step 1;

7. If υ(L(G)) = υ(L(G)−NL(G)(w)) > υ(L(G)− {w})
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7.1 then setL(G) = L(G)−NL(G)(w) and goto step 1;

8. If the optimal solution of(PL(G)−{w}) or (PL(G)−NL(G)(w)) is integer

8.1 then STOP (L(G)∈ Q);
8.2 else ifW 6= ∅ then goto step 4;

9. Choosev ∈ V (L(G)) and
9.1 apply the algorithm to the graphL(G)− {v} and if

L(G)− {v} ∈ Q

then STOP (L(G) ∈ Q) else goto 9.2;
9.2 apply the algorithm to the graphL(G)−NL(G)(v) and if

L(G)−NL(G)(v) ∈ Q

then STOP (L(G) ∈ Q) else STOP (L(G) /∈ Q);

End.

The main steps of the algorithm are consequence of the following results.
The step 2 is obvious. The step 3 follows from the fact that whenλmin(AL(G)) /∈

ZZ, then (PL(G)) has an optimal solution,x∗, which is unique, and henceL(G) ∈ Q
if and only if x∗ ∈ {0,1}|V (L(G))|. The step 5 follows from Theorem 4. The steps
6 and 7 are direct consequence of Theorem 5 and so, once obtained a subgraph
of L(G), L(G′), for which it is possible to get a conclusion, thenL(G) ∈ Q if
and only ifL(G′) ∈ Q. The step 8 follows taking into acount that ifυ(L(G)) =
υ(L(G)−U) then the optimal solutions of(PL(G)−U) define optimal solutions for
(PL(G)). Finally, the step 9 follows from theorem 6 implying the recursive execution
of the algorithm.

The step 9 is reached when∀v ∈ V (L(G))
υ(L(G)) = υ(L(G)− {v})

= υ(L(G)−NL(G)(v))
and

λmin(AL(G)) = λmin(AL(G)−{v})
= λmin(AL(G)−NL(G)(v))

and, in such case, a branching strategy it is performed in order to know ifL(G) ∈ Q
or not.

4. Numerical Example

It follows a numerical example for the recognition of a graph with a perfect match-
ing.

Let us consider the graph,G, and the corresponding graphL(G) both depicted
in Figure 1. Thenλmin(AL(G)) = −2.
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Figure 1. GraphsG andL(G).

SinceG is connected, in order to know ifG ∈ G, we may determine a non
negative solution of the system(1

2AL(G) + I8)x = ê, if such solution exists (other-
wise, according to theorem 8L(G) /∈ Q), that is, we may try to find a non negative
solution for the system



waf wac wcf wab wce wcd wbe wbd

waf 1 1
2

1
2

1
2 0 0 0 0

wac
1
2 1 1

2
1
2

1
2

1
2 0 0

wcf
1
2

1
2 1 0 1

2
1
2 0 0

wab
1
2

1
2 0 1 0 0 1

2
1
2

wce 0 1
2

1
2 0 1 1

2
1
2 0

wcd 0 1
2

1
2 0 1

2 1 0 1
2

wbe 0 0 0 1
2

1
2 0 1 1

2
wbd 0 0 0 1

2 0 1
2

1
2 1





xaf
xac
xcf
xab
xce
xcd
xbe
xbd


=



1
1
1
1
1
1
1
1


.

As we getx∗L(G), with componentsx∗af = 1, x∗ac = x∗cf = x∗ab = 0 and x∗ce = x∗cd =
x∗be = x∗bd = 1

2, which is an optimal solution for (PL(G)), thenυ(L(G)) = 3 =
|V (G)|

2 and henceG ∈ G. Therefore the algorithm may be applied.
Sincex∗L(G) /∈ {0,1}8, by step 2 we proceed with step 3. By step 3, since

λmin(AL(G)) = −2, we proceed with step 4. Choosing, for instance, the node in
W = V (L(G)) with maximum degree inL(G), wac, the graphsL(G) − {wac}
andL(G)−NL(G)(wac), depicted in Figure 2, are obtained. Sincex∗L(G)−{wac}, with
componentsx∗af = 1, x∗cf = x∗ab = 0 andx∗ce = x∗cd = x∗be = x∗bd = 1

2, and
x∗L(G)−NL(G)(wac), with componentsx∗bd = 0 and x∗ac = x∗be = 1 are optimal solutions
for (PL(G)−{wac}) and (PL(G)−NL(G)(wac)), respectively, we have

3= υ(L(G)) = υ(L(G)− {wac}) > υ(L(G)−NL(G)(wac)) = 2.

Then, applying steps 5 and 6,we return to steps 1, 2, 3 and 4 with the line
graphL(G)− {wac}. Choosing, fromW, the nodewce we get the graphs depicted
in Figure 3.

Now, sincex∗L(G)−{wac,wce}, with componentsx∗af = x∗cd = x∗be = 1 andx∗cf =
x∗ab = x∗bd = 0, andx∗L(G)−{wac}−NL(G)−{wac }(wce), with componentsx∗af = x∗ce = x∗bd =
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Figure 2. GraphsL(G)− {wac} andL(G)−NL(G)(wac).

Figure 3. GraphsL(G)− {wac,wce} andL(G)− {wac} −NL(G)−{wac}(wce).

1 andx∗ab = 0, are optimal solutions for (PL(G)−{wac,wce}) and (PL(G)−{wac}−NL(G)−{wac }(wce)),
respectively, then

υ(L(G)− {wac}) = υ(L(G)− {wac,wce})
= υ(L(G)− {wac} −NL(G)−{wac}(wce)),

and hence, reaching to step 8, since the optimal solutions of (PL(G)−{wac,wce}) and
(PL(G)−{wac}−NL(G)−{wac }(wce)) are both integer solutions we conclude thatL(G) ∈ Q
and the algorithm stops.

It must be noted that since the components of the optimal the solutions for
(PL(G)−{wac,wce}) and (PL(G)−{wac}−NL(G)−{wac }(wce)), are 0−1 and υ(L(G))= υ(L(G)−
{wac,wce}) = υ(L(G) − {wac} − NL(G)−{wac}(wce)), both define characteristic
vectors of maximum stable sets ofL(G) and then the sets of edges

M1 = {{a, f }, {c, d}, {b, e}} and M2 = {{a, f }, {c, e}, {b, d}}
are perfect matchings forG.
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5. Extensions and Related Results

The algorithm for recognising a graph with a perfect matching can be easily ex-
tended to the determination of maximum matchings of arbitrary graphs. In fact,
assuming thatG is connected and has at least one edge, in order to determine a
maximum matching ofG, M∗, we can apply the following algorithm, where it is
assumed thatWk is disjoint fromV (Gk).

0. Algorithm(to find a maximum matching ofG)

1. Setk = 0 and G0 = G;

2. If L(Gk) ∈ Q then goto step 7;

3. If |V (Gk)| is odd

3.1 then setWk = {wk};
3.2 else setWk = {w1

k , w
2
k};

4. SetV (Gk+1) = V (Gk) ∪Wk ;

5. SetE(Gk+1) = E(Gk) ∪ {{v,w} : v ∈ V (Gk),w ∈ Wk};
6. Setk = k + 1 and goto step 2;

7. If M is a perfect matching forGk then setM∗ = E(M) ∩ E(G).
End.

It must be noted that in worst case the algorithm ends when|V (G)| − 2 nodes
are added toG. In fact, assuming thatG is connected and has at least one edge,
according to the above procedure, if there isk such that|V (Gk)| = 2|V (G)| − 2
thenL(Gk) ∈ Q.

Since according to Las Vergnas (1975) every connected claw-free graph of even
order has a perfect matching, we may conclude that every line graph of a connected
graph with even size has a perfect matching, and therefore we have the following
corollary of Theorem 7.

COROLLARY 9. If G is a connected graph such that|E(G)| is even thenL(L(G))
∈ Q.

Proof.Since every line graph is claw-free andG is connected of even size, then
L(G) is connected of even order. Therefore, according to Las Vergnas (1975)L(G)

has a perfect matching and then, by Theorem 7,L(L(G)) ∈ Q, since alsoL(L(G))
is connected. 2

As an immediate consequence of the result of Las Vergnas (1975), ifG is con-
nected and has an even number of edges, thenE(G) can be partitioned in paths of
length 2.

An edgee ∈ E(G) is calledα–critical if α(G − {e})>α(G), whereG − {e}
denotes the graph obtained fromG such thatV (G−{e}) = V (G) andE(G−{e}) =
E(G) \ {e}. Then, as a direct consequence of Theorem 7, we may conclude that
a connected graphG of size |E(G)| > 2 has a perfect matching if and only if
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L(G) has noα–critical edges. Another consequence of Theorem 7 is that ifG is
an Hamiltonian graph of even order, thenL(G) ∈ Q.

Finally, since the inequalities (1.5) are fulfilled in equality form for graphs in the
classQ using optimal integer solutions of(P φ

∗
G ) (and then also of(PG)) we may

conclude that for these graphs spurious solutions to the Motzkin-Strauss program
(1.2) (i.e., those which only deliver the stability number via the optimal objective
value but do not serve to retrieve a maximum stable set) are impossible.
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