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Abstract. The problem of determining a maximum matching or whether there exists a perfect
matching, is very common in a large variety of applications and as been extensively studied in graph
theory. In this paper we start to introduce a characterisation of a family of graphs for which its
stability number is determined by convex quadratic programming. The main results connected with
the recognition of this family of graphs are also introduced. It follows a necessary and sufficient
condition which characterise a graph with a perfect matching and an algorithmic strategy, based on
the determination of the stability number of line graphs, by convex quadratic programming, applied
to the determination of a perfect matching. A numerical example for the recognition of graphs with a
perfect matching is described. Finally, the above algorithmic strategy is extended to the determination
of a maximum matching of an arbitrary graph and some related results are presented.
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1. Introduction

In this paper we deal with undirected simple graphs (that is, graphs where there is
nor loops neither multiple edgesy, for which vV (G) denotes the set of nodes and
E(G) the set of edges. An element B{G), whose ends are the nodeandj, is
denoted by, j}. Itis also assumed that is of ordern > 1 and sizen > O (i.e.,
[V(G)] = n > 1and|E(G)| = m > 0). The matrixAs denotes the adjacency
matrix of the graplG, that is,Ag = (a;;)nxn IS Such that

| 1if{i, j} € EG)
%j =1 0 otherwise

GivenU C V(G), we denote byG — U the subgraph induced by the set of nodes
V(G)\ U and byAs_y its adjacency matrix. Given a nodes V(G), N (i) is the
neighbourhood of the nodethat is,Ng(i) = {j € V(G) : {i, j} € E(G)}.

A subset of nodes C V(G) is stableif no two nodes inS are linked by an
edge. A stable sef is called amaximum stable sét there is no other stable set
with greater number of nodes. The number of nodes in a maximum stable set of
a graphG is called thestability number(or independence numbeof G and it is
denoted (as usually(G).

Given a subset of nodes of a graph S € V(G), the vectorx € R with
x, =1ifve Sandx, =0if v ¢ S is called the characteristic vector §f
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Denoting byimin(Ag) the minimum eigenvalue of the adjacency matrix of a
graphG, Ag, as it is well known, see (Cvetkovich, Doob and Sachs, 1979), if
G has at least one edge, thegin(Ag) < —1 and,Amin(Ag) = —1 if and only
if every connected component 6f is a complete subgraph. E(G) = @ then
Amin(Ag) = 0.

As it is proved in Luz and Cardoso (1998), assuming thidtas at least one
edge,¢; ,(G) is the best upper bound far(G), among the optimal values of the
family of convex quadratic programming problems

1
¢F ,(G) = maxae” x — bx" (————Ag + I)x 1 x >0},
’ _)\min(AG)

wheree is the all-ones vector dR”, I, is the identity matrix of ordet, anda and
b are real numbers such that> 0 anda — b > 1. On the other hand, with the
same assumption, according to Luz (199&(G) = ¢;,(G) if and only if for a
maximum stable sef of G (and then for all),

—Amin(Ag) < MIN{[Ng (i) N S| :i ¢ S}. (1.1)

Now, defining

$51(G) if E(G) #0
max(2e’x— || x ||, x > 0} = n otherwise,

(PY) ¢*(G) = {

as a direct consequence of the above results, we can conclude that for anyigraph,
a(G) < ¢*(G) andua(G) = ¢*(G) if and only if the inequality (1.1) is fulfilled.
Such upper bound, fax(G), also can be obtained from Motzkin—Straus result
(Motzkin and Straus, 1965), which may be looked up in Gibbons et al (1997), from
which we get

min{x"(Ag + L)x : x > 0,¢"x = 1))~ = a(G). (1.2)

In fact, assumingt (G) # ¥ and themmin(Ag) < —1, it follows that

1
X (————Ag+IL)x <xT(Ag+I)x Vx>0 (1.3)
_)\min(AG)

and hence, since by theorem 5 of Bomze (1998)

1
“(G) = max{2eTx —xT(——Ag+1L)x:x >0
¢*(G) X (—)»min(AG) G ) }

1
= (min{xT(mAG + In)x X 2 0, éTx = 1})_1,
—Amin\ G

applying (1.2) and (1.3) we obtain

a(G) < ¢*(G), (1.4)
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with equality if and only ifAmin(Ag) = —1 or there is an optimal solution;, for
(Pg ), such thate*” Agx* = 0. It must be noted that if* is an optimal solution
for (Pg*) thené” = = 1 and according to (1.2) and (1.4)

¢*(G)
¢*(G)?

x*T(Ag + Ix*
The plan of the paper is as follows. In Section 2 a complete characterisation of
the family of graphs with convex-QP stability number (where QP means quadratic
programming) is provided as well the main results connected with its recognition.
In Section 3 a necessary and sufficient condition that characterises graphs with a
perfect matching is introduced as well an algorithmic strategy for the recognition
of such graphs. In Section 4 a numerical example for the determination of a perfect
matching of a graph(, based on the determination of a maximum stable set of
its line graphL(G), by a convex quadratic programming approach is described.
Finally, in Section 5, the recognition of a graph with a perfect matching is extended
to the determination of a maximum matching of an arbitrary graph and some related
results are presented.

< a(G) < ¢7(G). (1.5)

2. Graphs with Convex-QP Stability Number

In Luz and Cardoso (1998), assuming tltat— {v} has at least one edge, it is
proved that ifp ; (G — {v}) = ¢5,(G) andimin(AG—(v) # Amin(Ag) thena(G) =
¢5 1(G) and, furthermore, it* € R"~1is an optimal solution fo(Pg’*_{v}), thenx*
such that
= { xp if i #£v
£ 7] 0 otherwise,

is the characteristic vector of a maximum stable seGofNow we introduce the
following generalisation.

THEOREM 1. If U € V(G)issuchthap*(G—U) = ¢*(G) andAr,,;,(Ag_y) #
Amin(Ag) theng*(G) = a(G) and, furthermore, any optimal solution QP(";iU)
define a characteristic vector of a maximum stable set .of

Proof. If G — U has no edges thef(G — U) = «(G — U) and, according to
the hypothesis,

¢ (G —U) =a(G - U) <a(G) < ¢"(G) = a(G) = ¢*(G).

Furthermorex(G — U) = a(G) = ¢*(G — U) implies that the optimal solution of
(Pg_U) is the characteristic vector of the maximum stableVsgr) \ U.

Let us suppose thdf(G — U) # @, x* is an optimal solution fo(Pg’*_U) and
x*, is such that

. |E. fjeve\U
YT o ifjeu.
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Lete be a all ones vector witp = n — |U| components. Then

1
(G —-U) = 2" x* — x T (———Ag_y + [,)x*
_)&min(AG—U) @ b
1
= 2 x* —x T (—————— A+ I)x*
_)&min(AG—U) ¢
1
< 2Ty —xT(———A I)x* 2.6
e’ x* —x (_)\'min(AG) ¢+ 1)x (2.6)

N

¢*(G).

Since¢p*(G — U) = ¢*(G), thenx™ is an optimal solution fo(Pg’*) and

x*T( 1 Ag + L)x* = x*T( 1 Ag + L)x*
————Ag+ L)x" = ——Ag + I)x".
—Amin(AG-v) —Amin(Ag)

ThusAmin(Ag) < Amin(Ag—y) impliesx*” Agx* = 0, that is,x* is the character-

istic vector of a maximum stable set 6f and thenx(G) = ¢*(G). a

Throughout this paper(G) stands for the optimal value of the convex quadratic
programming problem

(P;) v(G)=max2e’x —xT(Hg + I)x : x > 0},
where

H; = r—kmii(AGﬂAG if Amin(Ag) # 0
¢ 0 otherwise,

with [—Amin(Ag)] denoting the least integer not less than the symmetric value of
the minimum eigenvalue of.

It must be noted that(G) remains an upper bound far(G), which it is not
less tharp*(G), that is,

a(G) < 9°(G) < v(G).

On the other hand, since the right hand side of the inequality (1.1) is always an
integer, the lower bound of the necessary and sufficient conditiom {6 =
¢*(G) and then forx (G) = v(G)* can be improved. So we can say thdG) =
¢*(G) = v(G) if and only if for a maximum stable sef, of G (and then for all),

[—Amin(Ag)T < MIN{[NG (i) N S| :i ¢ S}. (2.7)

* Note that ifa(G) = ¢*(G) then(Pg*) has an integer 9 1 optimal solution which, according to
the Karush—Kuhn-Tucker optimality conditions, is also optimakfey;) and therp*(G) = v(G).
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The main advantage of the use ©fG) instead of¢*(G) is that if Anin(Ag) is
not integer then the optimal solution ¢P) is unique* and then is very easy to
conclude if the equalities (G) = ¢*(G) = v(G) hold or not.

A graph G such thatw(G) = v(G) is here in called a graph wittonvex-QP
stability numberand throughout this paper this class of graphs will be denoted by
Q.

According to the Karush—Kuhn—Tucker optimality conditions, > 0 is an
optimal solution for the convex quadratic programming probléta) if and only
if it is a solution of the linear complementarity problem

Agx = [—Amin(Ag)1(e — x) + )",

with y* > 0 andx*” y* = 0.
As an immediate consequencey ffis an optimal solution fo¢P;) thenx*” Agx*
= [—Amin(Ag)1x*T (6 — x*) and thus ifE(G) # ¢ then

AT % *T 1 * AT %

v(G)=2¢"x" —x (f—lmin(AG)] Ag + I)x e'x* > 1.
Therefore, since any subset of nodes with characteristic vedsa stable set iff
xTAgx = 0, we conclude thak(G) = v(G) if and only if there is an optimal
solution for (Pg), x*, such thatx* e {0, 1}". The same conclusion may be
obtained adapting the inequalities (1.5), assuming #tfids an optimal solution
for (Pg) and replacingp*(G) by v(G). As a direct consequence of the next the-
orem, it is also easy to conclude thatxif is an optimal solution foK Ps) then
VieV(G) 0<xf <1

THEOREM 2. Letal; be thei-th row of the matrixA. Then the n-tuple of real
numbersx* is an optimal solution forn Pg) if and only ifVi € V(G) xf =

max0, 1 — r*}, wherer} = —¢—— “'_G";G)].
Proof. Let x* be an optimal soﬁutlon fofPs), and lete, x* andx the subvectors

of e, x* andx, respectively, without thé-th component. Let

1
—A
[—Amin(AG) 1
First, it must be observed that

fo—iy(®) =28"x% — 77 ( G—iy + Li—1)x.

v(G) = max fg_i)(¥) + 2x — x? — Zx% L x> 0)
= fo-w (&) + 26 — x72 = 21}

= fo—iy (&™) + ¥ (x])

= fo-i(&*) + max{y (x;) : x; =0},

** It must be noted that i-Amin(Ag)<[—Amin(Ag)] then the objective function ofPg) is
strictly convex.
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wherey (x;) = 2x; — xi2 — 2.
Sincedixl_w(xi) =2(1—-r}) — 2x; and j—;l//(x,-) = —2, we can conclude that

¥ (x;) is a strictly concave function which attains its maximum on a critical point,
i.e., on the solution of equation

d
dxi

Therefore, sincey (x;) = max{y (x;) : x; > 0}, we have

Y(x)=0&x;,=1—7r].

xF =max0,1—r'}.

Conversely, let us suppose that there isiaple of real numbersy*, such that
Vi e V(G) xf =max0,1—r}}.
ThusVi € V(G) x =1—rf 4+ y;, with

) -@Q=-rif -1 <0
Yi=1o otherwise,

and theny; > 0. SoVi € V(G)
ri=1-x'+y & ati* = [—Amin(Ac)T(L — X[ + y;).

Therefore, setting” = [—A,i,(Ag)1y: Vi € V(G), we get the system of equa-
tions

abx* = [—Amin(A)1(L—x) + v/, i€ V(G)
Agx™ = [—Amin(Ag)1(e — x*) + y*,

which is equivalent to the Karush—Kuhn—Tucker optimality conditions (sitite*
= 0). O

It is an obvious conclusion that if a grapti, has no edges then, the optimal
solution of (P;) is the characteristic vector of the maximum stable set induced by
V(G), and thusx(G) = v(G) = |V (G)].

The class of graphs with convex-QP stability number is not hereditary (Lozin
and Cardoso, 1999). Though, according to the next theorem, this class of graphs is
closed under deletion oef—reducible sets of nodes (defining @areducible set of
nodes as being a subdétcC V(G) such thaw(G) = a(G — U)).

Before to proceed it must be noted that, by interlacing propertiés,df vV (G)
thenimin(Ag) < Amin(Ag_y) and therefore, by (2.6),

v(G — U) < v(G). (2.8)

THEOREM3. If G € @ andU < V(G) is such thaiw(G) = «(G — U) then
G-U~€ea@.
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Proof. SinceU is such thatt(G) = «(G — U) therefore, from the inequalities
a(G—-U) <v(G—-U) <v(G),
we can conclude that(G) = v(G) impliesa (G — U) = v(G — U). O
As a consequence of the above theorers; ¥ @ then thereisaséf C V(G)

such thaiU| = |V(G)| — v(G) andVT C U, G — T € @. Note that ifS is a
maximum stable set af then

VT CV(G)\S, a(G) =a(G—-T) <v(G—-T) <v(G),
and therefore:(G) = v(G) = a(G —T) = v(G — T) = v(G).

The following results provide an algorithmic strategy for the recognition of
graphs with quadratic stability number.

THEOREM 4. If there exista € V(G) such that
v(G) # maxv(G — {v}), v(G — Ng(v))}

thenG ¢ Q.

Proof. Since by (2.8)v(G) > v(G — U) YU C V(G), the hypothesis of
theorem implies that (G) > maxv(G — {v}), v(G — Ng(v))}.

Let S be a maximum stable set 6f. If v ¢ S then

a(G) = a(G — {v})) S v(G = {v}) < v(G).
If v e Sthena(G) = a(G — Ng(v)) < v(G — Ng(v)) < v(G). O

As immediate consequence of the above theored, éf @ then
Yv € V(G), v(G) = maXxv(G — {v}), v(G — Ng(v))}.

THEOREM 5. Consider thatv(G) = maX{v(G — {v}), v(G — Ng(v))} and that
v(G — {v}) # v(G — Ng(v)).
1. fu(G) =v(G —{v}) thenG € @ & G — {v} € Q.
2. fv(G) =v(G — Ng(v))thenG € @ & G — Ng(v) € Q.
Proof.
1. Let us suppose that € @. Sincea(G) = v(G) > v(G — Ng(v)) > a(G —
N¢g(v)), we can conclude that(G) > a(G— Ng(v)). Thus, ifS is a maximum
stable set folG, thenNg(v) N S # ¥ and therefore ¢ S. So

a(G —{v}) =a(G) =v(G) =v(G — {v}) = G — {v} € Q.
Conversely, supposing that — {v} € @, according to the inequalities
a(G — {v}) < a(G) < v(G) =v(G — {v}),

we can conclude that(G) = v(G).
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2. Let us suppose th&ét € @. Then, according to the hypothesis,
a(G) = v(G) > v(G — {v}) Z a(G — {v}),

and thenx (G — {v}) < a(G). Therefore, ifS is a maximum stable set then
veS, Ng(w)yNS =9yPanda(G — Ng(v)) = a(G).

Thusa(G) = a(G — Ng(v)) < v(G — Ng(v)) < v(G) and the assumption

thatG € @ impliesa (G — Ng(v)) = v(G — Ng(v)).

Conversely, supposing — Ng(v) € @, according to the hypothesis we know
thata (G —Ng(v)) < a(G) < v(G) = v(G—Ng(v)) and therw (G) = v(G).

O

None of the theorems 4 and 5 can be applied when all of the following equalities
hold

Yv e V(G) v(G) = v(G — {v}) = v(G — Ng(v)).

However the next theorem provides a branching strategy for such graphs (or sub-
graphs).

THEOREM 6. If there existaw € V(G) such thatv(G) = v(G — {v}) = v(G —
Ng(v)) then

G — Ng(v) €@
G € @ ifand only if or
G—-{vleaq

Proof. Let us suppose th@i € @ andS is a maximum stable setdf. If v € §
thena(G) = a(G — Ng(v)) < v(G — Ng(v)) = v(G) = a(G — Ng(v)) =
v(G — Ng(v)). If v ¢ Sthena(G) = a(G — {v}) < v(G — {v}) = v(G) =
a(G —{v}) =v(G — {v}).

Conversely let us suppose that— U € @, with U = {v} or U = Ng(v).
Then, sincex(G — U) < a(G) < v(G) = v(G — U), we can conclude that
a(G) = v(G). O

There are a large variety of graphs with convex-QP stability number. For in-
stance, as will be proved in Section 5,Gf is a connected graph with an even
number of edges, theh(L(G)) € @, whereL(G) denotes the line graph df.

Theline graphof a graphG it is constructed by taking the edges®@fas nodes
of L(G), and joining two nodes il (G) whenever the corresponding edgesiin
have a common node.

3. Characterisation of Graphs with a Perfect Matching

Given the graphG, a matchingin G is a subset of edges3/ € E(G), no two of
which have a common node. A matching with maximum cardinality is designated
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maximum matchingdn the other hand if for each node= V (G) there is one edge
of the matchingM incident withv, thenM is called gperfect matching

The problem of determining a maximum matching or whether there exists a
perfect matching is very common in a large variety of applications and as been
extensively studied in graph theory. There are several very readable texts about
matching theory, among which we can refer, for instance, the classical monograph
of Lovasz and Plummer (Lovasz and Plummer, 1986) or the survey of Pulleyblank
(Pulleyblank, 1995). The determination of a maximum stable set of a line graph
L(G) is equivalent to the determination of a maximum matchingzofThere-
fore, sincea(L(G)) < v(L(G)), the optimal solution of(P.)) is an upper
bound on the number of elements of a maximum matching: oBased on the
Edmonds perfect matching algorithm, introduced in his landmark paper (Edmonds,
1965), polynomial-time algorithms have been developed for the determination of a
maximum matching of a grap@.

A basic property of line graphs is that they are claw-free (that is, they are
graphs which contains no induced subgraph isomorpkitg). In Minty (1980)
and Shihi (1980) polynomial-time algorithms for the determination of maximum
stable sets of claw-free graphs were introduced. However, none of them utilize a
convex quadratic programming approach.

Let us denote byBs = (bye)nxm (Wheren = |V(G)| andm = |E(G)|) the
node edge incident matrix of a graph that is, such that

po— 11 if the nodev is incident with the edge
v 0 otherwise

ThenBLBs = AL + 21, is a positive semidefinite matrix and

T
A
Vi € R\ {0}, u” BLBou = u” Ay gy + 2lull? > 0= % > -2
u
So, the minimum eigenvalue df; ¢, is not less than-2 and if the Kernel ofBg,
Ker(Bg) = {u € R" : Bgu = 0}, is nontrivial andu € Ker(Bg) \ {0}, then

Apu = BZ;BGu — 2u = —2u. As a consequence;2 is an eigenvalue ol )
and themmin(AL(G)) = -2.
For a connected grapld;, Amin(AL) = —2 if and only if G has an even

cycle or two odd cycles (Doob, 1973). On the other hand, given a connected graph
G with n nodes andh edges, such thainin(AL ) = —2, then the multiplicity of
this eigenvalue i&2 — n + 1 if G is bipartite, andn — n otherwise (Doob, 1973).

Now, before to introduce the main result of this section, let us remind that a
graph has a perfect matching if and only if each of its components has a per-
fect matching. Hence, in order to get a characterisation of graphs with perfect
matchings it suffices to consider the case tias connected.

THEOREM 7. A connected graplG of ordern > 1, such thatL(G) is not
complete, has a perfect matching if and onlf.{iG) € Q.
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Proof. Since L(G) is a line graph which is connected (sin€eis connected)
and not complete, then

—2< Amin(Are) < 161 < —Apin(ALe) < 2.

Let us suppose tha#(G) is a perfect matching of; for which S(L(G)) is the
corresponding independent set of nodes @f). Lete € E(G)\ S(G) be the edge
which corresponds i (G) to the nodey,. SinceS(G) is a perfect matching af,
if e = {i, j} then there are two edges ¢; € S(G) such that the nodgis incident
with the edger; and the nodg is incident with the edge;. Thus, by construction,
the nodev, is adjacent to the nodes,, v.; € S(L(G)) and we can conclude that

Vv, ¢ S(L(G)) INp(6)(ve) N S(L(G))| = 2.

Furthermore, sincé (G) is a claw-free graph we can conclude th&ii ) (v.) N
S(L(G))| = 2. Therefore

[—Amin(ALG)] =2 < MIN{|NLG)(ve) N SL(G)] = ve ¢ S(L(G))}

and, according to (2.7%(L(G)) = v(L(G)).

Conversely let us suppose that there is no perfect matching &ord thatS(G)
is a maximum matching. Then there is a néde V (G) such that is not incident
with any edge ofS(G). On the other hand, sinc@ has no isolated nodes, the
nodek is incident with an edge = {k, j} € E(G), and there is an edgé €
S(G), such that; is incident withé (otherwiseS(G) would be not a maximum
matching). Thus, the node @f(G) which corresponds té, v;, does not belong
to the maximum stable sét(L(G)), and, by construction of.(G), v; is the only
node ofS(L(G)) adjacent ta;. Therefore,

MIN{INLG)(ve) N S(L(G))| = ve ¢ S(L(G)} =1 < 2= [=Amin(L(G))]

and, once again, by (2. 9(L(G)) # v(L(G)). O

It must be noted that ifE(G)| > 1 then only the triangles and the stars are
graphsG for which L(G) is a complete graph. For these graphs, however, itis very
easy to find a maximum matching.

The next theorem provides an easy way to find optimal solution$Ag()),
whenG has a perfect matching.

THEOREM 8. If G is connected and.(G) € @ then the optimal solutions of
(PLc)) are critical points for its objective function,

frcy(x) = 2¢"x — x" (Hp) + In)x.
Proof. If |E(G)| = 1 the proof is trivial. Let us suppose thd&(G)| > 1 and
let S be a maximum stable set fdr(G). SinceL(G) € @, then by (2.7)Vv ¢
S |Nr@)(v)NS| = 2 and, the characteristic vector §fx*, is an optimal solution
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for (Pp()). Therefore, by the Karush—Kuhn—Tucker optimality conditiahs, >
0 such that

AL(G)x* = Z(é — x*) + y* AN X*Ty* = O,

wheree denotes a all ones vector®f*, withm = |E(G)| = |V (L(G))|. Denoting
by a; ¢, thei-th row of A, ), we have the following equalities:

VieSajgxt = Y. xi=0=21-x)+y = y =0
JENLG ()

VigéSai(G)x* = Z x7:2:2(1—xl*)—{—yl* :}yl*:O
JENLG ()

Theny* = 0and

ArLo)x™ = [=tnin(AL) 1€ —x*) & V frLi(x™) =0,

whereV f; ) (x) denotes the gradient of the objective function Bf ). O

If for a connected grapty of ordern > 1, such thaf.(G) is not complete, there
is a critical point,x* € {0, 1}", of the objective function of ¥, ), fLc)(x) =
2¢Tx —xT (Hp )+ In)x, thenitis obvious thak (G) € @. Therefore, to recognise
if L(G) € @ is equivalent to recognise if the systetng)x = [—Amin(ALG))1(e—
x) has a 0— 1 solution. However, as it is well known, in general, the problem o
finding a O— 1 solution among the ones of a system of linear equations is an hard
problem.

Since, if a connected grap@, has a perfect matching thedL (G)) = LZG)' €
Z,whereZ is the set of integers, l&t be the set of connected grapfisof order
n > 1, such thav(L(G)) = 5 € Z (and then they are neither triangless, nor
stars,K1 ,, with whichv(L(K3)) = v(L(K41,,)) = 1). Thus we have the following
algorithmic strategy for the recognition of grapfise ¢ such thatl.(G) € Q.

0. Algorithm (to recognise graphs € g such thatL.(G) € Q)
1. SetW = V(L(G));
2. Letxz(G) be an optimal solution forky c)).
2.1 Ifx* € {0, VLG then STOPL(G) € Q);
3. If Amin(AL(c)) ¢ Z then STOP L(G) ¢ Q);
4. Choosew € W and setW = W \ {w};
5. If u(L(G)) ¢ {v(L(G) — {w}), v(L(G) — Nr()(w))}
5.1 then STOP (L(GE Q);
6. If v(L(G)) = v(L(G) — {w}) > v(L(G) — NLG)(w))
6.1 then sel.(G) = L(G) — {w} and goto step 1;
7. 1f v(L(G)) = v(L(G) — Nr(G)(w)) > v(L(G) — {w})
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7.1 then seL(G) = L(G) — Np(c)(w) and goto step 1;
8. If the optimal solution o P (G)—{w}) OF (PL(G)-N, ¢, w)) IS integer

8.1 then STOP (L(GE Q);
8.2 else ifW # ¢ then goto step 4

9. Choosev € V(L(G)) and
9.1 apply the algorithm to the gragh(G) — {v} and if

LG) — v} e@

then STOP L(G) € Q) else goto 2;
9.2 apply the algorithm to the gragh(G) — N (c)(v) and if

L(G) — Nr)(v) e @

then STOP L(G) € Q) else STOPL(G) ¢ Q);
End

The main steps of the algorithm are consequence of the following results.
The step 2 is obvious. The step 3 follows from the fact that Whgn(A L)) ¢
Z, then (P, () has an optimal solution;*, which is unique, and hende(G) € @
if and only if x* € {0, 1}/VZ©D)I The step 5 follows from Theorem 4. The steps
6 and 7 are direct consequence of Theorem 5 and so, once obtained a subgraph
of L(G), L(G"), for which it is possible to get a conclusion, thénG) € @ if
and only if L(G") € Q. The step 8 follows taking into acount thatufL(G)) =
v(L(G) — U) then the optimal solutions @#, ,—y) define optimal solutions for
(PLc))- Finally, the step 9 follows from theorem 6 implying the recursive execution
of the algorithm.
The step 9 is reached whem € V(L(G))

v(L(G)) = v(L(G) — {v})
= v(L(G) — Nr6)(v))
and
Amin(ALG) = Amin(ALG)—{v})
= Amin(ALG)-NL )

and, in such case, a branching strategy it is performed in order to kridoWif € @
or not.

4. Numerical Example

It follows a numerical example for the recognition of a graph with a perfect match-
ing.

Let us consider the grapl;, and the corresponding gragiiG) both depicted
in Figure 1. Themmin(ALG) = —2.
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a f //,,A\’\-”af
S - N
\ N AN
\‘ e_ / \= Wap l‘\“\]\cleHD Wed
\ S s
\ / /,/ Whe & & Wiy

Figure 1. GraphsG andL(G).

SinceG is connected, in order to know & € 4, we may determine a non
negative solution of the syste(éAL(G) + Ig)x = e, if such solution exists (other-

wise, according to theoremB(G) ¢ @), that is, we may try to find a non negative
solution for the system

Waf Wac Wef Wgh Wee Wed Whe Whd

wag (13 2 2 o o o o .
1 1 1 1 1 X
e 2o h oz 2oz 2 0 O
v 2oz b0z a0 0, 1
wp | 303 0o 1 0 o 1 1 ap | _ |1
Wee o &+ 3 o 1 3 1 o Xce 1
1 1 1 1 Xed
v | O3 3 0 7 10 g o 1
Wee | O O 0O 5 3 0 1 3 Xbd 1
we \O 0 0 1 o 1 3 1

As we getx; ), with components;, = 1, x;. = x7, = x;, = 0and §, = x7, =
Xy, = Xp; = % which is an optimal solution forA ), thenv(L(G)) = 3 =
V9l and hences e §. Therefore the algorithm may be applied.

Sincex;, ¢ {0, 1)8, by step 2 we proceed with step By step 3 since
Amin(AL)) = —2, we proceed with step.4Choosing, for instance, the node in
W = V(L(G)) with maximum degree il (G), w,., the graphsL(G) — {w,.}
andL(G) — Np(c)(w,.), depicted in Figure 2, are obtained. Sim;?G)_{wM}, with
componentst}, = 1,x%, = x}, = 0 andx}, = x}, = x;, = x;, = 3, and
X7 (G)— N1y (wae)» With cOmponentsy, = 0 and e = X, = lare optimal solutions
fOr (PL(G) - wae)) AN (PL(G)~Ny ) (war)): TESPECHIVELY, WeE have

3=v(L(G)) = v(L(G) — {wac}) > v(L(G) — NiG)(Wac)) = 2.

Then, applying steps 5 and &e return to steps,12, 3 and 4 with the line
graphL(G) — {w..}. Choosing, fromW, the nodew,.. we get the graphs depicted
in Figure 3.

NOW, SINCeX ) _(y...u.)» With componentse;, = x7;, = x;, = 1 andx;; =
Xap = Xpg = 0,800 ) (10 1N (6 ey (wee)» WIth COMPONENtST . = X7, = X =
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W f
Wef Woe @
Wab Wed
Whe Whd Whe @ ® Wyd

Figure 2. GraphsL(G) — {wac} andL(G) — Ny (G)(Wac).

Wa f Waf
Wef
Wab T Wed Wab Wee @
Whe Wpq Whd

Figure 3. GraphsL(G) — {wac, Wee} @NAL(G) — {wac} — NL(G)—{wae} Wee)-

1andyx;, = 0, are optimal solutions forKL () {w,e.wee}) AN PLG)—{wae)— N1 (6) - fuge) (wee))
respectively, then

U(L(G) = {wae}) = v(L(G) — {wac, Weel)
= U(L(G) - {wac} - NL(G)—{wM}(wce))a

and hence, reaching to step 8, since the optimal solution®;Qf(w,..u..;) and
(PL(G)~{wac)—N16)—1wae) (wee)) @7€ DOth integer solutions we conclude thaG) € @
and the algorithm stops.

It must be noted that since the components of the optimal the solutions for
(PLG)~twacwee}) BN PL(G)~{wac}— N1 (6 o) (wee))» @F€ =1 @nd v(L(G))= v(L(G)—
{Wac, Wee}) = V(L(G) — {Wae} — NL(6)—(wa}(Wee)), bOth define characteristic
vectors of maximum stable sets b{G) and then the sets of edges

My = {{a, f},{c.d}. {b.e}} and M= {{a, f},{c, e}, {b,d}}

are perfect matchings fav.



MAXIMUM MATCHING PROBLEM 305

5. Extensions and Related Results

The algorithm for recognising a graph with a perfect matching can be easily ex-
tended to the determination of maximum matchings of arbitrary graphs. In fact,
assuming that is connected and has at least one edge, in order to determine a
maximum matching ot;, M*, we can apply the following algorithm, where it is
assumed tha, is disjoint fromV (Gy).

0. Algorithm(to find a maximum matching af)
1. Setk =0and G = G;

2. If L(Gy) € Q then goto step 7;

3. If |V(Gy)| is odd

3.1 then seW; = {wy};
3.2 else seW; = (w}, w?);

4. SetV(Giy1) = V(Gr) U Wy;

5. SetE(Giq1) = E(Gy) U {{v, w} : v € V(Gy), w € Wi};

6. Setk = k + 1 and goto step 2;

7. If M is a perfect matching fat; then setM* = E(M) N E(G).
End

It must be noted that in worst case the algorithm ends Whet)| — 2 nodes
are added td. In fact, assuming thaf is connected and has at least one edge,
according to the above procedure, if theré isuch that vV (G,)| = 2|V(G)| — 2
thenL(Gy) € Q.

Since according to Las Vergnas (1975) every connected claw-free graph of even
order has a perfect matching, we may conclude that every line graph of a connected
graph with even size has a perfect matching, and therefore we have the following
corollary of Theorem 7.

COROLLARY 9. If G isaconnected graph such thd#(G)| is even ther. (L(G))
€ Q.

Proof. Since every line graph is claw-free a6dis connected of even size, then
L(G) is connected of even order. Therefore, according to Las Vergnas (19%5)
has a perfect matching and then, by Theorei(Z,(G)) € @, since alsd.(L(G))
is connected. O

As an immediate consequence of the result of Las Vergnas (194®)siton-
nected and has an even number of edges, B@n) can be partitioned in paths of
length 2.

An edgee € E(G) is calleda—critical if «(G — {e})>a(G), whereG — {e}
denotes the graph obtained frafrsuch thaV (G—{e}) = V(G) andE(G—{e}) =
E(G) \ {e}. Then, as a direct consequence of Theorem 7, we may conclude that
a connected graply of size|E(G)| > 2 has a perfect matching if and only if
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L(G) has nox—critical edges. Another consequence of Theorem 7 is thatigf
an Hamiltonian graph of even order, thenG) € Q.
Finally, since the inequalities (1.5) are fulfilled in equality form for graphs in the

class@ using optimal integer solutions QPg*) (and then also ofP;)) we may
conclude that for these graphs spurious solutions to the Motzkin-Strauss program
(1.2) (i.e., those which only deliver the stability number via the optimal objective
value but do not serve to retrieve a maximum stable set) are impossible.
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